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I. Quarks and the Standard Model
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Atoms

Sandia National Lab

U of Oregon Chemistry

Atoms: the building blocks of matter.
Today: we can make atoms visible

Size of the smallest atom (hydrogen):

0.000 000 000 1 m (meter) 
= 10-10 m = 1 Angstrom

How is it possible to see such tiny structures?

REU 2013
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Scattering: 
Gateway to the Subatomic World

Our vision: the eye collects light 
reflected from objects and our brain 
processes the information

Use this principle:
Shoot a ray of light or particles at an 
object. 
Measure the scattered rays with a 
detector.

Resolution of the probe (light, 
particle) is important:

The wavelength must be smaller than 
the size of the  structure to probe.

Light: wavelength 4000 – 7000 
Angstrom, too large to see an atom.
Better: X-rays, electrons 

REU 2013
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In 1911 E. Rutherford carried out his famous experiment with -particles . His 
target were gold atoms.

The positive charge in an atom 
and most of its mass is 
concentrated in a tiny, very 
dense center, the nucleus.

Rutherford’s result 
indicated that atoms are 
mostly empty space with a 
small massive center! 

Gold atoms

The Rutherford Experiment
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Particles

We distinguish particles by their …

participation in strong interactions
YES: they are called hadrons (or quarks)
e.g. proton, neutron
NO: they are called leptons
e.g. electron

spin
= Quantized angular momentum 
(can take values 0 , ½ , 1 , 3/2 , 2 , etc)
Electrons, protons, neutrons: spin ½ 

Particles with integer spin are 
called bosons.

Particles with half-integer spin 
are called fermions.

mass
usually measured in electronvolts (eV)
1 u ~ 0.939 GeV (Gigaelectronvolts,
Giga = Billion)

Electrons, protons and neutrons are fermions.

electric charge
positive or negative
usually in multiples of e

REU 2013
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The Hadron Zoo

In 1940 only 5 elementary particles were known: protons, neutrons, electrons, 
muons and positrons. Only protons and neutrons are hadrons (the strong force 
acts on them). 

With the advent of accelerators at the 
end of the decade a big ‘zoo’ of hadrons 
was discovered:
Pions, kaons, rhos, … many more

They could be grouped into one of two 
categories: 

Heavier baryons, whose total 
number is always conserved.
E.g. protons, neutrons

 Lighter mesons, which can decay 
into particles which are not hadrons.
E.g. pions, kaons

Too many! Maybe hadrons are not 
elementary particles after all?
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 In the 1960s and 1970s the Standard Model of Particle Physics was 
developed.

 Hadrons are bound states of new fermions called “quarks”.

 Besides the well-understood electromagnetic force there is a weak (nuclear)  
force and a strong (nuclear) force. 

 All 3 forces are described by gauge fields with gauge symmetry groups U(1), 
SU(2) and SU(3) . 

 Quantum Field Theory of the strong force = Quantum ChromoDynamics
(QCD)

 The Higgs mechanism was introduced to break the electroweak symmetry 
and give masses to the weak force carriers.

Rainer Fries 9REU 2013

The Standard Model
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The Standard Model

6 fermions and 6 leptons come in 
3 identical generations 
(only masses are different)
Plus they have antiparticles.

Leptons and quarks feel 
the weak force. Only 
quarks have color charges 
and feel the strong force.

New: Higgs boson.
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II. The Birth of QCD
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Start with Electrodynamics

 Maxwell:

 Field strength:

 Vector potential:

 Covariant derivative:

 U(1) gauge invariance:

 Lagrangian:

0 
F
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e
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 ieAD 
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F 

 AA


, 

     x
e

xAxA   1    1Ue xi 

Gauge group determined by

Commutator!


 FF

4
1


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A Strange New Electrodynamics

 C N Yang & R L Mills (1954) worked out the math for a generalization to 
“gauge fields” with more cimplicates symmetry groups.

 Most important example: SU (N ) = unitary N xN matrices with determinant 1. 

 From now on                   where        is a function  that takes values in 
the space of N xN matrices.

   NSUe xi   x

Rainer Fries
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SU(N) Yang-Mills Fields

 Maxwell:

 Field strength:

 Vector potential:

 Covariant derivative:

 U(1) gauge invariance:

 Lagrangian:

0 
F

   AADD
e
iF  ,

 ieAD 

 AA


, 

     x
e

xAxA   1

 Yang-Mills:

 Field strength:

 Vector potential:

 Covariant derivative:

 SU (N ) gauge invariance:

 Lagrangian:

0
FD

    AAigAADD
e
iF ,, 

 igAD 

    iiii ee
g
ieAeA 

 AA


, 


FF

4
1

 
 FF

4
1


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SU(N) Yang-Mills Fields

 Yang-Mills:

 Field strength:

 Vector potential:

 Covariant derivative:

 SU (N ) gauge invariance:

 Lagrangian:

0
FD

    AAigAADD
e
iF ,, 

 igAD 

    iiii ee
g
ieAeA 

 AA


, 

 All fields A and F and the current 
J are now N x N matrices.

 g = coupling constant of the 
theory.

 Non-abelian symmetry group 
“non-abelian gauge field”

 One immediate consequence: 
quadratic and cubic terms in the 
equations of motion! The field 
theory is non-linear. 

   



 AAAAA ,~     ,  ,~ 


 FF

4
1





 Hundreds of hadrons. Who ordered that?

 Gell-Mann & Zweig (1964): the zoo of hadrons could be understood if 
hadrons consisted of combinations of more fundamental spin-1/2 fermions 
with SU(Nf) flavor symmetry. Gell-Mann called them quarks.

 A crazy idea at the time!

Rainer Fries 16REU 2013

Taming the Hadron Zoo

Gell-Mann: ‘Such particles [quarks] presumably are not 
real but we may use them in our field theory anyway.’
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Hadrons as Bound States

+

p

 Meson = quark + antiquark

 Baryon = 3 quarks

Those quarks are called the valence quarks of a hadron.

E.g. the valence quark structure of the proton is uud

Postulate a new quantum number: color (“chromos”).  Quarks carry one of 
3 colors. 

Hadrons are color neutral, i.e. the color of the quarks and gluon inside has 
to add up to ‘white’.

Rainer Fries REU 2013



 An new Rutherford experiment at higher energy:

 Cross section for inelastic e+p scattering: 
extract two “structure functions” F1 and F2.

 Simply given by leading order (one-photon exchange) QED and Lorentz invariance.

 Two independent kinematic variables: 
 is the virtuality of the exchanged photon

 x is the momentum fraction of the object inside the proton struck by the photon (elastic 
scattering: x = 1)

 They can be related to the observables: the deflection angle and the energy loss of the 
electron.

Rainer Fries 18REU 2013

Dissecting Hadrons
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 Different predictions had been made.

 Suppose the proton consists of point-like spin-½  fermions (as in the quark 
model). Then:
 F1, F2 don’t depend on Q 2 (Bjorken scaling)

 F1, F2 are not independent:                           

(Callan-Gross relation)

 SLAC, 1968 (Friedman, Kendall and Taylor): 

Quarks it is!

Rainer Fries 19REU 2013

Quarks

212 FxF 

Bjorken scaling

(shown here 
for HERA data)

Callan-Gross



 The complete quark family:

 What are their interactions?

 e+e- collisions: each quark comes in triplicate!

 Confirm there is a new quantum number: color!

Rainer Fries 20REU 2013

Quarks
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 Fritsch, Gell-Mann, Leutwyler (1972): Quarks couple to a SU(Nc) Yang-
Mills field. Nc = number of colors.
 Quanta of the Yang-Mills/gauge field: gluons

 Color plays the role of the “charge” of the quark field.

 Quantum chromodynamics is born!

 QCD Lagrangian:

 q = Nf quark fields of masses mf. F = gluon field strength.

 Quantization: non-linearity  self-interaction of the gluon field
 Gluon itself carries Nc

2-1 colors.

 3-gluon vertex

 4-gluon vertex

Rainer Fries 21REU 2013

Quantum Chromodynamics

  



 FFqmDiqL f

f
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1  
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III. Basic Properties of QCD



 Analytically: No!

 Numerically: Yes, in certain situations  Lattice QCD.
 Discretize space-time and use euclidean time.

 Extremely costly in terms of CPU time, very smart algorithms needed.

 Perturbation theory: only works at large energy scales / short distances (see 
asymptotic freedom below).

 Effective theories: Based on certain approximations of QCD or general 
principles and symmetries of QCD (e.g. chiral perturbation theory, Nambu-
Jona Lasinio (NJL) model, classical QCD etc.)

Rainer Fries 23REU 2013

Can We Solve QCD?

QCDOC at 
Brookhaven 
National Lab



 Running coupling in perturbative QCD (pQCD):
 Perturbative -function known up to 4 loops.

 Leading term in pQCD 

 For any reasonable number of active flavors Nf = 3 … 6.

 E.g. from pQCD “potential” (cf. Handbook of Perturbative QCD)

 In QED:

Rainer Fries 24REU 2013

Asymptotic Freedom

 3
2

3
1 gg

d
dg 



-function

  





  fN

3
211

4
1

21 
 0

0
12

1 3
2  e

d
de




QED: e larger at higher energies/smaller 
distances: 
screening through electron-positron cloud

QCD: g smaller at higher energies/smaller 
distances: 
anti-screening through gluon loops



 Leading order running of the coupling:
 QCD here: integration constant; “typical scale of QCD”

 QCD  200 MeV

 Vanishing coupling at large energies = Asymptotic Freedom
 This permits, e.g., the application of pQCD in DIS.

 Large coupling at small energy scales = “infrared slavery”

 Bound states can not be treated perturbatively

Rainer Fries 25REU 2013

Asymptotic Freedom

2
QCD

2

1 ln

4






s

Gross, Wilczek, Politzer (1974)



 Experimental fact: no free quarks or fractional charges found.

 Confinement property of QCD: 
 Only color singlet configurations allowed to propagate over large distances.

 Energy required to remove a quark larger than 2-particle creation threshold.

 Heuristic picture:
 At large distances the Coulomb-like gluon 

field between quarks becomes a flux tube 
with string-like properties.

 String  breaks once enough work is done for pair creation.

 Flux tubes can be understood as gluon flux expelled 
from the QCD vacuum.

Rainer Fries 26REU 2013

Confinement

Confinement is non-perturbative. It has 
not yet been fully understood. 

It has been named one of the outstanding 
mathematical problems of our time. The 
Clay Foundation will pay you $1,000,000 
if you solve it!

http://www.claymath.org/



 Why gluon flux tubes?
 Anti-screening of color charges from perturbative running coupling: Dielectric constant of 

QCD vacuum  < 0.

 Dual Meissner Effect:  0 for long distances, expelling (color) electric flux lines.

 Usual Meissner Effect in superconductors: perfect diamagnetism expels magnetic flux.

 Potential between (heavy) quarks can be 
modeled successfully with a Coulomb 
plus linear term:

 String tension K  0.9 GeV/fm.

 Successful in quarkonium spectroscopy.

 Can be calculated in lattice QCD (later).
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Confinement

  Kr
r
arV 



 Classical QCD has several gobal symmetries.

 Chiral symmetry SU(Nf)L  SU(Nf)R :                        

 acting on 2Nf-tuple                           of left/right-handed quarks

 Obvious when QCD Lagrangian rewritten with right/left-handed quarks                                         
:

 Chiral symmetry slightly broken explicitly by finite quark masses of a few MeV.

 Scale invariance: massless classical QCD does not have a dimensionful
parameter.

 Both symmetries are broken:
 Chiral symmetry is spontanteously broken in the ground state of QCD by a chiral

condensate            .

 Quantum effects break scale invariance: QCD is scale intrinsic to QCD.
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Global Symmetries
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 Pions are the Goldstone bosons from the spontaneous breaking of chiral
symmetry.

 Gell-Man-Oaks-Renner relation:

 Infer value of chiral condensate at T=0:

 Chiral perturbation theory:             decreasing with increasing temperature. 

 There is also a gluon condensate  in the QCD vacuum

 Dilation current   from scale invariance:
 Conserved for scale-invariant QCD (Noether Theorem).

 Through quantum effects:

 Gluon condensate implies a non-vanishing energy momentum tensor of the QCD vacuum!
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QCD Vacuum

dduummmf du 
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

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

 FFs



 Assuming for vacuum                                from Lorentz invariance.

 Energy density of the vacuum:

 This is also called the Bag Constant for a successful model for hadrons: 
vacuum exerts a positive pressure P=B onto a cavity with quark modes.

 Summary: QCD vacuum is an ideal (color) dielectric medium with quark 
and gluon condensates, enforcing confinement for all but color singlet 
configurations.
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QCD Vacuum
  gT  Vac

B 3Vac fm
MeV 300



 Collins and Perry, 1975: Due to asymptotic Freedom coupling becomes 
arbitrarily weak for large energies i.e. also for large temperatures.

 Therefore quarks and gluons should be asymptotically free at very large 
temperatures T.

 This hypothetical state without confinement at high T would be called 
Quark Gluon Plasma (QGP).

 Expect vacuum condensates to melt as well  chiral symmetry restoration 
at large T.

 How can confinement be broken?

Rainer Fries 31REU 2013

Why Quark Gluon Plasma?
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I.3 Free the Quarks!



 Hadronic states cease to exist due to percolation.

 Density of massless free pion gas                                                                      from 
Bose distribution growing like T3.

 Pions will start to overlap at some temperature!

 Free pion volume                            with R  0.65 fm

 Closest packing of pions corresponds to ~ 260 MeV, percolation at                               
which corresponds to Tc = 186 MeV.

 Consequences:
 Individual hadrons no longer well defined.

 Percolation would allow quarks to propagate over large distances avoiding the QCD 
vacuum, confinement broken.

 A very simple model (massless free pions!),which gives a fair estimate of Tc.
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End Of Confinement: Percolation
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 Hadronic physics breaks down at some temperature due to the “Hagedorn
Catastrophe”.

 Above T  100 MeV thermal excitations of hadrons besides pions are 
important. 
 Many resonances contribute, each suppressed  by factor                at large mass M.

 Hadron spectrum at large mass:
 Let                          be the number of resonances in a mass interval dM.

 Fit to hadron spectrum: exponential increase in states parameterized as

 Total density of hadrons                                                             diverges for T > T0.

 Hadron thermodynamics stops 
above T0  150 … 200 MeV.
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End of Confinement: Hagedorn

     TMnMdMTn ,tot 

 dMM

TMe /

  0/TMe
M
AM  

From YHM; 
originally: Gerber and Leutwyler; 
pions: chiral perturbation theory



 Start with relativistic free gas of massless pions; degeneracy d = 3 (isospin)

 E.g. P and  from distributions fcts. f via energy momentum tensor:

 Entropy s from thermodynamic relation Ts = +P.

 Note                 , speed of sound                                      .

 Corrections through interactions: cf. YHM, ch. 3.6

 QGP:

 Bag constant B: measure relative to vacuum.

 Degeneracy:

 dQGP = 37 for two light flavors, dQGP = 47.5 for three light flavors.

 Massive increase in degrees of freedom from hadron gas to QGP.
Rainer Fries 35REU 2013

QGP as a Relativistic Free Gas
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 Assume free pion gas and free quark gluon gas as two phases.
 Low T: P > PQGP due to bag constant  pion gas preferred state

 High T: P < PQGP due to larger degeneracy in QGP  QGP preferred state

 Phase transition: phase equilibrium requires P = PQGP

 With B =(220 MeV)4 and Nf =2:  Tc  160 MeV.

 While P is continuous,  and s exhibit a jump at Tc  first order phase 
transition.

 Latent heat                     . 

 So far zero baryon chemical potential  = 0 (i.e. equal numbers of quark and 
antiquarks in equilibrium).
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A Simple Equation of State
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 Currently best method to determine the QCD equation of state: lattice QCD
 Experiment: high energy heavy ion collisions

 Chiral condensate = order parameter for chiral phase transition.

 Transition temperature for chiral phase transition:
 Tc = 1549 MeV [RBC-Bielefeld]

 Tc = 151 MeV [Wuppertal-Bielefeld] 

 Static heavy quark potential: QCD strings melt

Rainer Fries 37REU 2013

QGP: Survey of Lattice QCD Results

Static quark potential 
(Karsch et al.)

HotQCD, chiral condensate



 Phase diagram of QCD in T- plane: away from =0 very little known.

 Sign problem for  ≠ 0 in lattice QCD.
 Need innovative techniques: reweighting, Taylor expansion, imaginary , …

 Probably a critical point (endpoint of 1st order phase transition line) located 
close to T = Tc and  ~ 200-400 MeV.
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QGP: Survey of Lattice QCD Results

[Fodor, Katz, JHEP 04, 050 (2004)]
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IV. The Cosmic Connection
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Matter In The Early Universe

[w
w

w.
na

sa
.g

ov
]   The history of luminous

matter.

 Expansion + cooling; 
clumping  and local reheating 
for the past ~ 13 billion years.

 Governed by gravity, dark 
matter, dark energy, …

 The tiny first second of the 
universe: strong and 
electroweak forces are 
important!

 And maybe much more exotic 
stuff …



 Thermodynamic history: succession of phase 
transitions and freeze-outs.

 Rapid decrease in degrees of freedom.

 QCD transition @ ~ few s
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The First Second

Nuclear Physics: 
Strong Force/QCD
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HEP: new particles?
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 Bulk properties (thermodynamic, 
transport, …) of QCD played an important 
role in the early universe.
 Order of the QCD phase transition, latent heat, 

speed of sound, …

 Enduring cosmic effects?
 Initial conditions for nucleo-synthesis and 

beyond.

 Mass generation for luminous matter.

 Relics?

 How can QGP be studied experimentally 
today?
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The QCD Transition in the Cosmos
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V. High Energy Heavy Ion Collisions



 How can we study the QCD transition today? 
 Impacting cosmic rays (nuclear component!) 

– impractical 

 Nuclei in particle accelerators!

 Problem: extremely short life times ~ 10-23 s
for the fireball ~ typical time scales of QCD.
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Let’s Create a ‘Little Bang’

LHC: 
sNN = 14(7) TeV (p+p)

sNN = 5.5(2.76) TeV (Pb+Pb)
stot = 1.1(0.55) PeV (Pb+Pb)

Tmax ~ 800 MeV

RHIC: 
sNN = 500 GeV (p+p)

sNN = 200, 130, … 7.7 GeV
(Au+Au)

stot,max= 40 TeV (Au+Au)
Tmax ~ 400 MeV



 Thousands of particles created.

 Directed kinetic energy of beams  mass (particle) production + thermal 
motion + collective motion
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High Energy Heavy Ion Collisions (HICs)

RIKEN/BNL Research Center



 Lorentz contraction of the nuclei L ~ R/  0.

 Approximate boost-invariance in beam direction  
a la Bjorken (later)

 Fireball: Longitudinal (~ boost invariant 
expansion) throughout time evolution
 Not much altered through pressure gradients.

 Pressure in transverse expansion: collective 
transverse acceleration and expansion

 For arbitrary impact parameter b: elliptic overlap 
shape in transverse plane (“almond shape”)
 For non-spherial nuclei (e.g. U+U) many more 

geometrical degrees of freedom.
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Basic Geometry

x
y z



1. Initial condition: nuclear wave functions

2. After nuclear overlap: no immediate thermalization of matter
 Probably strong gluon fields/glasma.

3. Approx. thermal and chemical equilibrium reached after ~ 0.2 – 1.0 fm/c
 Around midrapidity, checked through applicability of hydrodynamics.

4. QGP phase: initial temperatures up to ~400/600 MeV (RHIC/LHC)
 Transverse expansion and cooling of the fireball

5. Hadronization around Tc and subsequent hot hadron gas phase
 HRG may fall out of chemical equilibrium at “chemical freeze-out”.

6. Decoupling of hadrons (“kinetic freeze-out”) and free streaming of hadrons 
to detectors.
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Time Evolution
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 Hadrons are found in chemical equilibrium.
 Compare to prediction from

 Chemical freeze-out temperature Tchem ~ 160-170 MeV

 Tchem independent of s at large energies

 Very small B, compatible with dNB/dy measurements.

 Enough time to chemically equilibrate!
 But inelastic processes (e.g. K+p  + ) shut off below 

Tchem; elastic processes needed for kinetic equilibrium!
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Chemical Equilibrium

[Andronic et al, arXiv:1210.7724]

[Braun-Munzinger, Stachel, arXiv:1101.3167]
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 Another important test for 
equilibration: thermal transverse 
spectra of hadrons.

 However: thermal source is not at rest: 
collective transverse expansion.
 Boltzmann with flow velocity u:

 At low pT: typical “flow shoulder” for 
heavier hadrons.

 At high low pT: blue shift of temperature
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Thermal Equilibrium and Flow

TupTE ee //  

 Collective flow can also 
be observed in the 
average transverse 
momenta of different 
particles as a function of 
mass.



 Bulk hadron data for pT < 2 GeV can be fit well by “blast wave shape” = 
thermal distribution + flow.
 Temperature in the fit = kinetic freeze-out temperature, typically ~100 MeV. 

 Typical average velocities 0.5-0.7 c for central RHIC and LHC.

 Kinetic equilibrium below Tchem is maintained by elastic scattering.

 Realistically: Not all particles decouple at the same temperature.
 Furthermore: decoupling is not a sudden process but a gradual shut off of the interaction 

rate.

 This can be seen in higher                      
freeze-out temperatures for 
multi-strange hadrons,e.g. , , 
(“sequential freeze-out)
 Small cross sections of these particles in 

a HRG.
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Flow and Freeze-out



 We can measure the thermal radiation (blackbody) from the QGP phase. 

 Photons do not feel the strong force: the fireball is almost transparent to 
them.

 Results from PHENIX and ALICE experiments.
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Temperature Records

Exponential fit for pT < 2.2 GeV/c
inv. slope T = 304±51 MeV
for 0–40% Pb–Pb at √s 2.76 TeV
PHENIX: T = 221±19±19 MeV
for 0–20% Au–Au at √s 200 GeV

[Safarik, QM12]


